A Unified Framework for Model-based Clustering
نویسندگان
چکیده
Model-based clustering techniques have been widely used and have shown promising results in many applications involving complex data. This paper presents a unified framework for probabilistic model-based clustering based on a bipartite graph view of data and models that highlights the commonalities and differences among existing model-based clustering algorithms. In this view, clusters are represented as probabilistic models in a model space that is conceptually separate from the data space. For partitional clustering, the view is conceptually similar to the ExpectationMaximization (EM) algorithm. For hierarchical clustering, the graph-based view helps to visualize critical/important distinctions between similarity-based approaches and model-based approaches. The framework also suggests several useful variations of existing clustering algorithms. Two new variations—balanced model-based clustering and hybrid model-based clustering—are discussed and empirically evaluated on a variety of data types.
منابع مشابه
A Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملA Method for Dynamic Clustering of Data
This paper describes a method for the segmentation of dynamic data. It extends well known algorithms developed in the context of static clustering (e.g., the c-means algorithm, Kohonen maps, elastic nets and fuzzy c-means). The work is based on an unified framework for constrained clustering recently proposed by the authors in [1]. This framework is extended by using a motion model for the clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 4 شماره
صفحات -
تاریخ انتشار 2003